

KU LEUVEN

Capturing the intermittent character of renewables by selecting representative days

Kris Poncelet

ETSAP Meeting

June 1st, 2015

Abu Dhabi, United Arab Emirates

Introduction

Long-term energy system optimization models:

- Computationally demanding:
 - Technology rich
 - Large geographical area
 - Long time horizon (e.g., 2014-2060)
- + => Model simplifications:
 - Low level of temporal detail
 - Low level of techno-economic operational detail
 - Low level of spatial detail
 - Overestimation potential uptake of IRES
 - \Rightarrow Overestimation value of baseload technologies

Temporal representation

Temporal representation

Temporal structure

= Property of planning model

Within each time slice, all values are fixed (wind, load, etc.)

Data preprocessing

Different approaches:

* "Integral"

- Take the average value of all values corresponding to a specific time slice
- Traditionally used, corresponds to energy balance
- Does not sufficiently account for the variability of IRES

* "Representative days"

- Each year represented by a small set of representative days (consisting of a number of diurnal time slices)
- => No/less averaging of data 3/06/2015

Integral Traditional									
Temporal	Number of time slices								
representation	Seasonal	Daily	Diurnal	IRES	Total				
Integral TS low	4	-	3 (day, night, peak)	-	12				
Reference (TS ref)	52	7	24	-	8736				

Integral with separate time slice level for RES availability

7

Integral method with separate time slice level for RES availability

- Pro's:
 - Low # of TS required
 - Easy to implement
- Cons:
 - Loss of chronology => storage, ramp rates?
 - Correlation between different regions/resources?

Representative days

- Pro's:
 - High accuracy possible
 - Chronology (and correlation) maintained

Cons:

- Higher #TS required?
- How to ensure that days are representative?

Selecting representative days

🔊 Goals:

- Select a set of historical days, and corresponding weights, such that these days are representative for the data-set
- Make optimal use of available #TS => capture as much as possible information

Representative?

		First order (highest priority			y) Second order (lower priority)					
Aspect	Yearly average value	Distribution	Dynamics			Correlation				
1			ST	MT	LT	Between 'profile types'	Between regions			
Important E to account d for: t	Energy yield of different technologies + load	Variability (static) of the load and IRES	Ramping rates, storage	LT storage technologies	Different wind/solar /load years	value of electricity generation in different time steps	value of electricity generation, grid extensions			

Optimization approach to select representative days

Methodology

Input = time series for Belgian onshore wind generation, solar generation and load in 2014

* 3 original profiles (OP)

A0 Bins

Select a varying number of representative days

- Quantify error in approximating the duration curves, the dynamics and the correlation
- Compare with simple heuristic approach to select representative days

Static aspects (only OP)

Results – 2 representative days

14

Results – 8 representative days

15

Results – 24 representative days

16

Results – number of days Vs. resolution

Trade-off # days and resolution (limited # of time slices = # days * # time slices/day)

Up to now: all selected days with 15min resolution

3/06/2015

Conclusions

- Temporal representation typically used strongly impacts results
 - + => Overestimating potential uptake of IRES and baseload generation
 => underestimating costs
- Improving the temporal representation without strongly increasing the # of time slices possible
 - by using a time slice level for IRES availability
 - by using a set of representative days
- Selecting representative days
 - Developed MILP model for selecting representative days
 - Consider static aspects, dynamic aspects and aspects related to correlation
 - * Sufficient #days should be prioritized to using a high resolution

Kris Poncelet, <u>kris.poncelet@kuleuven.be</u> Hanspeter Höschle, <u>hanspeter.hoschle@kuleuven.be</u> <u>http://www.mech.kuleuven.be/en/tme/research/energy_en</u> vironment/